Large-conductance Ca2+-activated K+ channel beta1-subunit knockout mice are not hypertensive.

نویسندگان

  • Hui Xu
  • Hannah Garver
  • James J Galligan
  • Gregory D Fink
چکیده

Large-conductance Ca2+-activated K+ (BK) channels are composed of pore-forming α-subunits and accessory β1-subunits that modulate Ca2+ sensitivity. BK channels regulate arterial myogenic tone and renal Na+ clearance/K+ reabsorption. Previous studies using indirect or short-term blood pressure measurements found that BK channel β1-subunit knockout (BK β1-KO) mice were hypertensive. We evaluated 24-h mean arterial pressure (MAP) and heart rate in BK β1-KO mice using radiotelemetry. BK β1-KO mice did not have a higher 24-h average MAP when compared with wild-type (WT) mice, although MAP was ∼10 mmHg higher at night. The dose-dependent peak declines in MAP by nifedipine were only slightly larger in BK β1-KO mice. In BK β1-KO mice, giving 1% NaCl to mice to drink for 7 days caused a transient (5 days) elevation of MAP (∼5 mmHg); MAP returned to pre-saline levels by day 6. BK β1-KO mesenteric arteries in vitro demonstrated diminished contractile responses to paxilline, increased reactivity to Bay K 8644 and norepinephrine (NE), and maintained relaxation to isoproterenol. Paxilline and Bay K 8644 did not constrict WT or BK β1-KO mesenteric veins (MV). BK β1-subunits are not expressed in MV. The results indicate that BK β1-KO mice are not hypertensive on normal or high-salt intake. BK channel deficiency increases arterial reactivity to NE and L-type Ca2+ channel function in vitro, but the L-type Ca2+ channel modulation of MAP is not altered in BK β1-KO mice. BK and L-type Ca(2+) channels do not modulate murine venous tone. It appears that selective loss of BK channel function in arteries only is not sufficient to cause sustained hypertension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BK channel beta1-subunit regulation of calcium handling and constriction in tracheal smooth muscle.

The large-conductance, Ca2+-activated K+ (BK) channels are regulators of voltage-dependent Ca2+ entry in many cell types. The BK channel accessory beta1-subunit promotes channel activation in smooth muscle and is required for proper tone in the vasculature and bladder. However, although BK channels have also been implicated in airway smooth muscle function, their regulation by the beta1-subunit...

متن کامل

Large - conductance Ca 2 - activated K channel 1 - subunit knockout mice are not hypertensive

Xu H, Garver H, Galligan JJ, Fink GD. Large-conductance Ca activated K channel 1-subunit knockout mice are not hypertensive. Am J Physiol Heart Circ Physiol 300: H476–H485, 2011. First published December 3, 2010; doi:10.1152/ajpheart.00975.2010.—Large-conductance Ca -activated K (BK) channels are composed of poreforming -subunits and accessory 1-subunits that modulate Ca sensitivity. BK channel...

متن کامل

Beta 1-subunits are required for regulation of coupling between Ca2+ transients and Ca2+-activated K+ (BK) channels by protein kinase C.

Colonic myocytes have spontaneous, localized, Ins (1,4,5) trisphosphate (IP3) receptor-dependent Ca2+ transients that couple to the activation of Ca2+-dependent K+ channels and spontaneous transient outward currents (STOCs). We previously reported that the coupling strength between spontaneous Ca2+ transients and large conductance Ca2+ activated K+ (BK) channels is regulated by Ca2+ influx thro...

متن کامل

Beta1-subunit of the Ca2+-activated K+ channel regulates contractile activity of mouse urinary bladder smooth muscle.

1. The large-conductance calcium-activated potassium (BK) channel plays an important role in controlling membrane potential and contractility of urinary bladder smooth muscle (UBSM). These channels are composed of a pore-forming alpha-subunit and an accessory, smooth muscle-specific, beta1-subunit. 2. Our aim was to determine the functional role of the beta1-subunit of the BK channel in control...

متن کامل

Downregulation of the BK channel beta1 subunit in genetic hypertension.

The molecular mechanisms underlying increased arterial tone during hypertension are unclear. In vascular smooth muscle, localized Ca2+ release events through ryanodine-sensitive channels located in the sarcoplasmic reticulum (Ca2+ sparks) activate large-conductance, Ca2+-sensitive K+ (BK) channels. Ca2+ sparks and BK channels provide a negative feedback mechanism that hyperpolarizes smooth musc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 300 2  شماره 

صفحات  -

تاریخ انتشار 2011